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The behavior  of two structural  e l emen t s  m a d e  of i dea l l y  p las t ic  

m a t e r i a l  with nonlinear  viscosi ty is invest igated.  

This model  was first proposed by Odqvist [1] and employed  by 
Rozenblyum [2]. Odqvist 's  mode l  rece ived  sat isfactory expe r imen t a l  
conf i rmat ion  in the  work of Gardner and Mi l l e r  [31 who c lea r ly  ob-  

served the y ie ld  point;  (up to a ce r ta in  stress l eve l  there  is a non-  
l inear  re la t ion  be tween  the s t eady-s ta te  creep stresses and rates, and 

beyond a c r i t i ca l  stress ("creep  l i m i t " )  flow at arbi t rary strain rates 

is observed). 
In a number  of cases neg lec t ing  the e las t ic  strains leads to too 

rough an es t imat ion  of the rea l  behavior  of s tructural  e lements .  Thus, 
an inves t iga t ion  of the  process of stress re laxa t ion  must  t ake  ins tan-  

taneous e l a s t i c i ty  into account .  

The first part of this paper is concerned with the problem of stress 

re laxa t ion  in a tube  f i t ted over a r igid shaft when the  tube m a t e r i a l  
obeys the fol iowing condit ions (Fig. l a ,  b). Everywhere where the 

yidld point has not been reached the strains are e las t ic ;  moreover,  

a t  stresses above  a ce r t a in  va lue  c reep  s t ra ins  ( s teady-s ta te  or t ran-  

s ient  f in i te)  develop.  The  y ie ld  point  is the m a x i m u m  permiss ib le  

stress for the ma te r i a l ;  in regions where the y ie ld  point is reached 
the e las t i c  and creep strains may  be neg lec t ed  as compared  with the  

plas t ic  strains. 
The second part of the paper is devoted to the buck l ing  of bars 

under condit ions of nonl inear  creep. 

As dis t inct  from [4-6], in which a bar  wi th  an i d e a l i z e d  cross 

sect ion is invest igated,  we wi l l  consider a solid bar  and take  into 

accoun t  the va r i ab i l i t y  of the stresses over the sect ion.  Moreover, 

at  stresses less than  o s the  s t eady-s ta te  creep relat ions are taken wi th-  
out a l lowance  for ins tantaneous e las t i c  s t ra ins-- in  fact,  the  mode l  

employed  is that  of a r igid,  per fec t ly  p las t ic  m e d i u m  with ins tan-  

taneous deformat ion  a l lowing for nonl inear  viscosi ty.  

w 1. In i t i a l  s ta te  of stress and strain in a pressurized tube.  We wi l l  
consider an incompress ib le  tube  of c i rcu la r  cy l ind r i ca l  cross sect ion 

m a d e  of an e l a s t i c - p e r f e c t l y  p las t ic  m a t e r i a l  under condit ions of 

p lane  deformat ion.  The d imensionless  radi i  of the tube  are: ins ide--  

a, o u t s i d e - 1 .  
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Fig. 1 

In the  presence  of a uniform i n t e rna l  pressure p in the  Mast ic  

s ta te  the stress components  t ake  the form [7] 

l ~ i  ~r "JF 00 
o, 

p a  ~ 

The stress in tens i ty  

fro - -  Or p* 
~ = "  2 __ r2 . ( 1 . 2 )  

For an incompress ib le  tube the re la t ion  between rad ia l  d i sp lace -  

ment  and radius u(r) takes the form 

u (r) = 1.5 p * E - l r  -1 , 

where E is  the modulus of e l a s t i c i t y  of the ma te r i a l .  In accordance  

with (1.2),  the stress in tens i ty  r eaches  a m a x i m u m  at the inside sur- 

face  of the tube. If o i is such that  oi  = q at  r = a, where q is the 
l i m i t i n g  va lue  of oi, then a p las t ic  zone develops at  the ins ide  sur- 
face .  The  dimensionless  radius of the in te r face  be tween  the  e las t i c  

and plas t ic  zones wi l l  be denoted by c. 

// " 0/.75 " 
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Fig, 2 

In the  plas t ic  zone 

r or==.+2, o0=--,+2q(,+lo§ 
(i. 3) 

In the elastic zone 

% = - - q e  2 ( r - ~ - -  t ) ,  % = qc~ ( : 2  + 1),  

~ = qc~r -~ (c ~< r < t ) .  (1 .4)  

The radius of "the in te r face  be tween  zones is re la ted  with the in-  

t e rna l  pressure as follows: 

The  rad ia l  d i sp lacements  u(r) of the tube  in the e las top las t ic  s ta te  

have  the fol lowing dependence  on r: 

u (r) = t .5  qc ~ E-a r  -I. 

w Solut ion of p rob lem wi th  a l l owance  for s t eady-s t a t e  creep.  
This  mode l  is an a t t e m p t  to  descr ibe  the  processes in  the  tube af ter  
i t  has been d y n a m i c a l l y  f i t ted  over a r igid shaft. In s imp le  tension 

(or pure torsion) d iagrams  the  Young's  modulus  (or shear modulus)  

remains  unchanged at  d i f ferent  s train rates,  whereas the  y ie ld  point  

rises wi th  increase  in  s t ra in  rate.  The tube  is f i t ted in the cold s ta te  

a t  such a speed tha t  the y ie ld  point  in shear increases  from the  s ta t ic  

va lue  k to the dynamic  va lue  q: q / k  = k > 1, We in t roduce  the di-  

mensionless  stresses s ; o /q .  If si -- 1 / k  everywhere  at  a -< r -< 1, then 

the tube remains  plas t ic .  This case is of no interest ;  therefore  in  what  

follows we wi l l  everywhere  assume tha t  the s ta te  of stress a t  the in-  

i t i a l  m o m e n t  is such tha t  on the ins ide  part  of the tube or throughout 

the tube  s i > 1 /M In this  region s t eady-s t a t e  creep develops in ac -  

cordance  wi th  the power l aw 

(z~.c)" = Bqn (s i __ i lL)n 
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Here (~ic) �9 is the creep rate intensity,  B and n are constants char-  
ac te r i z ing  the creep process. As t ~  ~ (t  is t ime)  the ma te r i a l  be -  
comes e l a s t i c -pe r f ec t ly  plast ic  with a s ta t ic  y ie ld  point  si = 1 / k  
(Fig. l a ) .  

1.~ 

].0 

0. 

f l 

-1.l 

.I ~, 

r f 
0 . e l  o . e ~  

!;5.= 

Fig. 3 

At the i n i t i a l  momen t  the in te rna l  pressur e po impar ts  to the in-  

side contour of the tube a d i sp l acemen t  u(a) = 1 .5  p*E'~, i f  the en t i re  

tube is in the e las t i c  state, or u(a) = 1 .5  qc2E-Za -t, i f  the  inside part 

a -< r -< c is in the pe r fec t ly  p las t ic  s ta te  s i = 1. In accordance  with 

the formula t ion  of the  problem, u(a) does not vary with t ime .  From 
the  condit ions of p lane  deformat ion  and incompress ib i l i ty  i t  follows 

that  u(r) is also constant  in t ime .  

We wi l l  consider tha t  part of the tube a -< r -< d -< 1 (or the whole 

tube), in  which at  the i n i t i a l  m o m e n t  si > 1 / k .  The re la t ion  be tween 
the stress and Strain rate  in tens i t ies  

e(---- -K- q'+ 

and the condition Ou/Ot = 0 give the differential equation in s i 

3 . + B q n _ a ( s i  _ ~ )  = 0 .  --E sl 

In tegra t ing ,  we obtain 

= ~ {t q- (~.si0-- t)  [ t  q- 

1 
BEqn-l (si~ t,] n-l}  

3 (n --  4) 

(2. z) 

(2. 2) 

The function si0 = s i0 ( r ) - the  dis tr ibut ion of s i a t  t = 0-- is  found 

from (1.1)  or (1 .3 ) - (1 .4 ) .  Equation (2. 2) gives  si(r, t) a t  any point 

of the tube  at  any m o m e n t  of t ime .  After this  i t  is possible to de-  

t e rmine  Sr(r, t) from the equa t ion  

(2.3) s~ (r, t ) =  i Zsi(r t) ~ dr ,  
1 

a consequence  of the equ i l ib r ium equation,  and then so(r , t) from 

(1.2) .  We denote  the stress components  as t ~ oo by sioo, Sr~o. sO~. 

We wi l l  de t e rmine  the  r e l a t i ve  decrease  in  pressure A = (P0 -- 

-- Poo)/P0 for an e las t i c  and e las top las t ic  d is t r ibut ion si0. Four cases 

need to be considered.  

When si0 < I the two cases 

k Po* Po* , ] ('~176 
2,  i 

A := i - -  - ~ o  In -'~ (k ~ / ~ *  ~ ka2iL). 

When the cases 
t i r ( c% %*1 

A =  ( ~ - - I ) [ 1  q - 2 1 n ( e / a ) l - - t n  ~. (aN<cN < ~-0.,), 
~ [21n(e / a ) +  t - - c  "~] 

2 1 n ( i / a )  (s ~ c ~ t ) .  
a = t - -  [2 in (c / a) § l --  c2 l 

Figure 2 presents A(k) curves for a tube with a = 0 .5  for l im i t i ng  

e las t i c  (c = 0. 5), e las toplas t ic  (c = 0 .75)  and l imi t i ng  plas t ic  (c = 1) 

states at  the i n i t i a l  moment .  In Fig. 3a, b, c the continuous l ines 

represent the relat ions eio (r), %o (r), e~o (r), the cha in-do t ted  l ines 
the relat ions sto * (r) s r~  (r), sex ~ (r) a t  k = 1 .5  for a = 0.5,  c = 0.5,  
0.75,  1. A t e = 0 . 5 ,  c = 0 . 7 5 ,  c = l  we have  A = 8. 4%, 26.6~ 

33.4%, respect ively .  

w Solution of the re laxa t ion  problem for a tube with a l lowance  
for t ransient  f in i te  creep.  We wi l l  consider a tube f i t ted over a r igid 
shaft at  a s train ra te  corresponding to an e l a s t i c -pe r f ec t ly  p las t ic  o i - 

- s i  d i ag ram for the tube m a t e r i a l  with the same l i m i t i n g  va lue  oi  = 

= k as in  the s ta t ic  oi  - s i  d iagram.  In this case we refer a l l  the  

stresses to k: s = o /k .  Let the s ta t ic  d iagrams (Fig. l b )  a t  0 <_ s i -< w < 
< 1 (where w corresponds to the e las t i  c l im i t )  co incide  with the dy-  

n a m i c  d iagram;  at  ~o < si < 1 the e las t i c  strains of the dynamic  d ia-  

g ram are added to the t ransient  creep strains, whi le  a t  si = 1 the 

m a t e r i a l  is per fec t ly  plast ic .  The s ta t ic  d i ag ram thus introduced 

agrees with exper iments  on t i t an ium,  mi ld  s tee l  and other mate r ia l s .  

We int roduce the fol lowing re la t ion  be tween  the in tens i t ies  of 

stress, s train and the corresponding rates a t  w < s i < 1: 

3kst" . [ 3ksl \ 
~(--- T ~-Bk'~(sl--e)n--Ak,i----E--). (3.1) 

Fig. 4 

Here the constants B and n cha rac te r i ze  the s t eady-s t a t e  creep, and 

the constant  A the c reep  a t tenuat ion .  At the  i n i t i a l  m o m e n t  t = 0 

there  follows from (3.1)  

8t = 3ks~/E, (3 .2)  

which corresponds to  the dynamic  d iagram.  To obtain the s ta t ic  d i a -  

g ram we in t eg ra t e  (3 .1)  wi th  the condit ion s i = 0. We obtain 

3k8t Bk n 
~t (0 = - g -  + -A-  ( ~ -  ~)~ (i - -  e -%,  

as t - ~  ~o 
Bk n 

, t = ~  i + - -X-  ( s~ -  0,p.  (3.3) 
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At s i = w curves (3 .2)  and (3 .3)  merge  smoothly  with each other. 
At s i = 1 the de r iva t ive  d s i / d s  i has a discontinuity,  which can be 
e l imina ted  at the expense of a compl i ca t i on  of (3.1).  

We now turn to the problem of r e l axa t ion  of an incompress ible  

tube. As in the p reced ing  section, incompress ib i l i ty  g ives  s i  = si0 = 
= eonst, el" 0 = 0, We in tegra te  (3.1) under these condit ions:  

I t 
3k ~ ds t t ~ A(e~o--3ks!/E)--Bk n(s t - ( a )  n " 

(3. 4) 

, S'iO 

The distr ibut ion si0(r ) is de te rmined  on the basis of (1 .1)  or (1.3),  
(1.4),  in which q must be replaced by k. 

Equation (3 .4)  gives the dis t r ibut ion si = si(r, t). Then, in accor-  

dance  with (2.3)  and (1.2).  we can find the stresses Sr(r , t) and s0(r, t) 
at any momen t  of t ime .  Since  in the genera l  case Eq. (3 .4)  cannot  

be  comple t e ly  integrated,  we performed ca lcu la t ions  for a tube with 

a = 1/2,  whose m a t e r i a l  remains  e las t ic  a t  0 - s i -< 0 .75.  Three 

different  vaines  of c were considered: 0 .5 ,  0.75,  and 1. As an ex-  

ample ,  we used the fol lowing values of the m a t e r i a l  cha r ac t e r i s t i c s :  
n =5 ,  E/k  =103, Bk n = 0 . 0 3 2 h r  -1. The constant  A was se lec ted  so 

that  the curve (3. 3) in tersec ted  the straight  l i ne  si = 1 at  a point  cor- 

responding to the nomina l  y ie ld  point  and de te rmined  using Ss = 0.2%. 

i. e . ,  Sis = 0 .004  (Fig. lb) ,  A = 0. 0078 hr -1. 

The distributions Sio (r), Sro (r), %0 (r) (Fig. 3a, b, e), ca lcu la t ed  

for the two models,  coincide.  The functions sic o (r), Src  o (r), #co0 (r) 
are represented in Fig. 33, b, c by a broken l ine .  The r e l a t i ve  de-  

crease in the pressure of the tube on the shaft & = (P0 - P~)/P0 is 
0 . 5 7 % a t e  = 0 . 5 ,  A = 3 . 4 2 % a t  c = 0 . 7 5  and ZX = 3. 69% at  c = l .  

w Buckling of a bar. We wi l l  consider the  problem of the buck-  

l ing  of a bar wi th  an i n i t i a l  curvature  under the  act ion of an ax ia l  

load.  For the stress-strain r e l a t ion  we wi l l  t ake  an expression of the 
type o = Ds "m. We wii1 consider  a bar (Fig. 4) of constant  cross sec-  

t ion compressed by a long i tud ina l  force P and hav ing  an i n i t i a l  curva-  

ture v0(x ). During creep the de f l ec t ion  wi l l  increase,  and the increase  

in de f lec t ion  wi l l  be denoted by v(x, t). We wi l l  adopt the hypothesis  

of p lane  sections; then; assuming that  the  def lect ions  are small ,  we 

can wri te  

O2v 
~ : = e o + z  0x ~ , (4 .1)  

where s o is the deformat ion  of the bar axB, and z is the coordinate  of 

the sect ion of the bar in the pIane  of bending.  The equ i l ib r ium equa-  

tions for the bar can  be wri t ten in the form 

h h 

P = ~ ~ ,  - ~ (~ + ~0) = ~ ~ e ~ ,  (4. ~) 
- h  - h  

where 2h is the he igh t  of the bar. 
We wi l l  inves t iga te  the behavior  of a h inged bar. In this case we 

assume tha t  both the i n i t i a l  and the secondary def lec t ions  can be  suf- 

f i c i en t l y  accu ra t e ly  approx imated  by a s ingle  h a l f - w a v e  of a sinnsoid: 

v0 = ao s i n - ~ - ,  ~ = a s i n - - - ~ .  (4 .3)  

We sat isfy Eqs. (4.2) by  the co l loca t ion  method.  We introduce the 

d imensionless  parameters  (b0 is the  m e a n  thickness of the bar) 

bar) 

b p Po P 
bo -=- b~, ~ = Db~oh ' T ~ ~ o h ~  s , 

a g ~ h  ~ z 
u = - - ~ - ,  p = - -~ / - - ,  ~ ----.--~-. (4 .4)  

Using (4. 1 ) - (4 .  4) for the  case when there  are no p las t ic  regions 

over  the cross sect ion of the bar, we obtain 

1 1 

~ (~0"- ~'~) '~ a~, - e~ (~ + ~~ = " f b~ (~~  ~ ' ~ ) , ~ a ~ .  (4. ~) 
-1 -1 

We m a k e  the substitution a0" = kpu" ; then system (4. 5) can be 

wri t ten in the form 

1 

P1 ---- (pu')m Io, Io (k) = I bl (k - -  ~)rn d~, 
- 1  

1 

--Px(u--~-uo)=(pu')rnfl ,  f l (k )  = i bl(k--$)m+l~d~" (4. 6) 

From (4. 6) i t  is easy to obtain a s ingle  equat ion for de te rmin ing  
k as a function of t i m e  t: 

P(--'~o/~I1y k'=/t ,  IoPl ~i/m] " (4 .7)  

For a bar  of rec tangular  cross sect ion (b t = 1) we have  

(k + t)  r"+~ - -  (k - -  t)  m§ 
I 0 =  m + t  

k (k + t)  '~+~ + (k - -  t)~+~ 
I 1 = ~ - - ~  Io - -  m + 2 

We der ive  the boundary condit ions for k de te rmined  from (4. 7). 

At t = 0 we have  the condi t ion u = 0 and hence  from (4.8)  we find 

Io(ko)u o = -I t (k0) .  
The condi t ion for the appearance  of p l a s t i c i ty  on the  concave  side 

of the bar  g ives  an expression for f inding the other boundary of the 

region of va r i a t ion  of k where equat ion (4. 7) holds true. 

From the condi t ion o = Os at  g = - 1  we obtain 

% = A (pu') m (kl + t)  m. (4 .8)  

E l imina t ing  u" from (4.6) and (4,8), we find the equat ion for kl: 

AP~(kx + l )m = zSlo(k~) , or 2 T (kl -Jc t ) m  = I o ( k l ) "  (4. 9) 

When y < 1 / r  the solut ion of (4. 9) can be represented wi th  suf- 

f i c i en t  accuracy  in the form k 1 = y/(1 - my); a t  y c lose to 1 k t 

ym/(1 - ~,). 
Thus, for the time of onset of plastic flow on the concave face 

of the bar r t we obtain the expression 

"r ~1 

i pll/rndt--- S Iol/m(-- 
0 I% 

(4. 10) 

For a bar of rec tangula r  cross sect ion expression (4. 10) assumes the 

form 

"h ko 

0 kl  

i (k) = [(~ + i ) m + l _  (k _ t/m+l]~m f ~ ( ~ +  ~ 2 - - t ) m  l 
~'m ~ - ~  J L I - -  [(k + i )  m+l - -  (k - -  t)m+ll2J " 

We now turn to the  case when a s ingle  p las t ic  region propagates  

over the cross sect ion of the bar. Then system (4 .5)  for a bar of rec-  

tangular  cross sec t ion  is rep laced  by the fol lowing equations:  

1 

2"( --. ~ + t + -~s (co" - -  u'p~) m dG "~s (~o" - -  u'p~,) = t ,  
1 

1 
F.? - -  l . A C 

- -  27 (tt -}- u0) ~.  - ~  + a--~(eo'--u'p~)rn~d~. (4 .11)  

Here ~ is the boundary be tween  the viscous and p las t ic  zones. This 

sys tem charac te r izes  a rec tangula r  zone:  i t  is rea l  up to the  m o m e n t  

when a p las t ic  region appears on the convex face  of the bar. The con-  

d i t ion for the appea rance  of such a region has the form 

A ( ~ ' - - u ' p ) m : - - a s .  (4. 12) 
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We note that condition (4. 12) gives the following values of the 
parameters: 

k ~ T ,  ~r~---2T-- t ,  u'p.~- ~ �9 (4.19) 

Knowing u" at the end of the first period and rising the equation 
for u" from (4.13), it is easy to estimate the duration of the second 
period by approximating the function u. 

We will investigate the behavior of the bar when two plastic zones 
propagate over the cross section. We denote by gz the boundary be- 
tween the zone of viscous flow and the second plastic region. We then 
have the two relations 

A (eo" - -  p u ' ~ l )  ' ~  = ~8 ,  A (~0" - -  p ~ . ~ ) m  = _ ~8. ( 4 .  14) 

By using (4.13) we can reduce the first equilibrium equations to 
the form 

m 280 
2~ - - - - ~  ( h  + ~-) + ~.p (,~ + l)" (4.15) 

From (4. 14) and (4. 18) we obtain ~ i +  ~= = 2T,~o" ~ u'py. Then, 
from the second equilibrium equation we find an equation for u: 

(u'p)~ [1 - -  2T (u + u0) - -  T~] ---~ ~ - ~  �9 (4.16) 

The critical total deflection as u" --* .D is found from the relation 

~* W u0 ~ (I -- ~,~)/2T. 

Equation (4. 16) can easily be integrated for constant y. 
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